نوع مقاله : مقاله

نویسندگان

گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران

چکیده

بررسی پایداری تغییرات پوشش گیاهی یکی از حیاتی‌ترین مسائل در مدیریت پوشش گیاهی است. در این تحقیق، شاخص هرست ماه آوریل با استفاده از محصول NDVI سنجنده MOD13Q1 طی سال‌های 2000 تا 2016 در نرم‌افزار ArcGIS محاسبه شد. همچنین برای شناسایی الگوها و پایداری پوشش گیاهی فارس از تحلیل رگرسیون خطی استفاده شد. با تلفیق نتایج تجزیه و تحلیل رگرسیون خطی و نتایج شاخص Hurst، پایداری آینده در روند تغییرات NDVI نیز محاسبه شد. نتایج نشان داد که مناطق جنوبی استان فارس کمترین و مناطق شمالی، بیشترین مقدار NDVI را دارند. علاوه بر این، با حرکت به سمت شمال، حداقل و حداکثر مقادیر NDVI افزایش می‌یابد. همچنین در اکثر مناطق استان فارس، به‌ویژه در جنوب و شمال، سری زمانی NDVI شاخص هرست بیش از 5/0 است. تغییرات پوشش گیاهی مشاهده‌شده در ماه چهارم منعکس‌کننده این است که تغییرات پوشش گیاهی در آینده همسو با تغییراتی است که در گذشته اتفاق افتاده است. به‌عبارت‌دیگر، اگر دوره مورد مطالعه کاهش پوشش گیاهی را نشان دهد، با کاهش پوشش گیاهی در آینده مواجه خواهیم بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Examining the Sustainability of Vegetation Cover Changes Using Remote Sensing (Case Study: Fars Province)

نویسندگان [English]

  • Maliheh Behrangmanesh
  • Esmaeil Heidaryalamdarlo
  • Hasan Khosravi

Department of Reclamation of Arid and Mountainous Areas, Faculty of Natural Resources, University of Tehran

چکیده [English]

Examining the sustainability of vegetation cover changes is one of the most crucial issues in vegetation management. In this study, the Hurst index for April was calculated using the NDVI product from the MOD13Q1 sensor over the years 2000 to 2016 in ArcGIS software. Additionally, linear regression analysis was used to identify patterns and the sustainability of vegetation cover in Fars province. By integrating the results of linear regression analysis with the Hurst index, future sustainability in the NDVI change trend was also estimated. The results showed that the southern regions of Fars province have the lowest and the northern regions the highest NDVI values. Furthermore, moving northward, both the minimum and maximum NDVI values increase. In most areas of Fars province, especially in the south and north, the NDVI time series Hurst index exceeds 0.5. The vegetation changes observed in April indicate that future changes will align with those that occurred in the past. In other words, if the studied period indicates a decrease in vegetation cover, future vegetation will likely continue to decrease.


کلیدواژه‌ها [English]

  • NDVI
  • Hurst Index
  • Fars Province
  • Satellite Data
  • MOD13Q1
Thomas Mueller, Kirk A. Olson, Todd K. Fuller, George B. Schaller, Martyn G. Murray and Peter Leimgruber. (2008). In search of forage: predicting dynamic habitats of Mongolian gazelles using satellite-based estimates of vegetation productivity. Journal of Applied Ecology. 45, 649-658.
Nathalie Pettorelli1, Sadie Ryan, Thomas Mueller, Nils Bunnefeld, Bogumila Jedrzejewska, Mauricio Lima, Kyrre Kausrud. (2011). The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Inter-Research. 46 (1), 15-27.
Shengzhi Huang, Bo Ming, Qiang Huang, Guoyong Leng. (2017). A Case Study on a Combination NDVI Forecasting Model Based on the Entropy Weight Method. Beibei Hou Water Resources Management. 31 (11), 3667.
Arnab Kundu, N. R. Patel, S. K. Saha, Dipanwita Dutta. (2017). Desertification in western Rajasthan (India): an assessment using remote sensing derived rain-use efficiency and residual trend methods. Natural Hazards. 86 (1): 297.
Tanita Suepa, Jiaguo Q, Siam Lawawirojwong, Joseph Messina. (2016). Understanding Spatio-temporal variation of vegetation phenology and rainfall seasonality in the monsoon Southeast Asia. Environmental research. 47, 621-629.
Lawley, M., Lewis, K., Clarke, B. (2016). Site-based and remote sensing methods for monitoring indicators of vegetation condition: An Australian review. Ecological Indicators. 71, 1273–1283.
Qian, Bo & Rasheed, Khaled. (2004). Hurst exponent and financial market predictability. Proceedings of the Second IASTED International Conference on Financial Engineering and Applications.
Guli Jiapaer, Shunlin Liang, Qiuxiang Yi, Jinping Liu. (2015). Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecological Indicators. 58, 64-76.
Khajoei Nasab, F., & Khosravi, A. R. (2014). Ethnobotanical study of medicinal plants of Sirjan in Kerman Province, Iran. Journal of ethnopharmacology, 154(1), 190-197.‏
Peng, J., Liu, Zh., Liu, Y., W, J., Han, H. 2012. Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecological Indicators, 14 (1): 28-39.
Potter, C., Boriah, S., Steinbach, M., Kumar, V., Klooster, S. 2008. Terrestrial vegetation dynamics and global climate controls. Climate Dynamics, 31 (1): 67–78.
Pettorelli, N., Vik, O., Mysterud, A., Gaillard. J.M., Tucker. C.J., Stenseth, N.C. 2005. Using the satellite derived NDVI to assess ecological responses to environmental change. Trends in ecology and evolution, 9 (20): 503-510.
Jiang, L. Jiapaer, G. Bao, A. Guo, H. Ndayisaba, F. 2017. Vegetation dynamics and responses to climate change and human activities in Central Asia. Science of the Total Environment. 599-600: 967-980.
Hou, X., Ting, W., Liangju, Y., Song, Qian. 2012. Characteristics of multi-temporal scale variation of vegetation coverage in the Circum Bohai Bay Region, 1999–2009. Acta Ecologica Sinica, 32 (6): 297-304.
Hurst, H.E. 1951. Long-term storage capacity of reservoirs. Transactions of American Society of Civil Engineers, 116: 770.